博客
关于我
皮尔逊相关系数
阅读量:775 次
发布时间:2019-03-24

本文共 312 字,大约阅读时间需要 1 分钟。

协方差与相关系数的理解

协方差是衡量两个随机变量倾向于同时增大或减小的一个指标。通常我们把协方差记作cov(X, Y),其中X和Y分别代表两个变量。方差则是描述一个单一随机变量分布离散程度的重要指标,记作σ_x或者σ^2。

对于样本数据而言,相关系数ρ可以通过以下公式计算得出:

ρ = cov(X, Y) / (σ_x * σ_y)

相关系数ρ的取值范围在-1到1之间。当ρ为1时,表示X和Y之间呈完全正相关关系;当ρ为-1时,则表示完全负相关;若ρ为0,则说明X和Y之间没有线性关系。

相关系数的几何意义是衡量两个变量之间曲线的几何相似性。ρ越接近1或-1,则曲线越趋近;反之,ρ越接近0,曲线与直线之间的距离也就越大。

转载地址:http://efvkk.baihongyu.com/

你可能感兴趣的文章
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>
NLP的不同研究领域和最新发展的概述
查看>>
NLP的神经网络训练的新模式
查看>>
NLP采用Bert进行简单文本情感分类
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
nmap 使用方法详细介绍
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
nmap指纹识别要点以及又快又准之方法
查看>>
Nmap渗透测试指南之指纹识别与探测、伺机而动
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>