博客
关于我
皮尔逊相关系数
阅读量:775 次
发布时间:2019-03-24

本文共 312 字,大约阅读时间需要 1 分钟。

协方差与相关系数的理解

协方差是衡量两个随机变量倾向于同时增大或减小的一个指标。通常我们把协方差记作cov(X, Y),其中X和Y分别代表两个变量。方差则是描述一个单一随机变量分布离散程度的重要指标,记作σ_x或者σ^2。

对于样本数据而言,相关系数ρ可以通过以下公式计算得出:

ρ = cov(X, Y) / (σ_x * σ_y)

相关系数ρ的取值范围在-1到1之间。当ρ为1时,表示X和Y之间呈完全正相关关系;当ρ为-1时,则表示完全负相关;若ρ为0,则说明X和Y之间没有线性关系。

相关系数的几何意义是衡量两个变量之间曲线的几何相似性。ρ越接近1或-1,则曲线越趋近;反之,ρ越接近0,曲线与直线之间的距离也就越大。

转载地址:http://efvkk.baihongyu.com/

你可能感兴趣的文章
netty代理
查看>>
Netty入门使用
查看>>
netty入门,入门代码执行流程,netty主要组件的理解
查看>>
Netty原理分析及实战(一)-同步阻塞模型(BIO)
查看>>
Netty原理分析及实战(三)-高可用服务端搭建
查看>>
Netty原理分析及实战(二)-同步非阻塞模型(NIO)
查看>>
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty发送JSON格式字符串数据
查看>>
Netty和Tomcat的区别已经性能对比
查看>>
Netty在IDEA中搭建HelloWorld服务端并对Netty执行流程与重要组件进行介绍
查看>>
Netty基础—1.网络编程基础一
查看>>
Netty基础—1.网络编程基础二
查看>>
Netty基础—2.网络编程基础三
查看>>
Netty基础—2.网络编程基础四
查看>>
Netty基础—3.基础网络协议一
查看>>
Netty基础—3.基础网络协议二
查看>>
Netty基础—4.NIO的使用简介一
查看>>
Netty基础—4.NIO的使用简介二
查看>>
Netty基础—5.Netty的使用简介
查看>>
Netty基础—6.Netty实现RPC服务一
查看>>