博客
关于我
皮尔逊相关系数
阅读量:775 次
发布时间:2019-03-24

本文共 312 字,大约阅读时间需要 1 分钟。

协方差与相关系数的理解

协方差是衡量两个随机变量倾向于同时增大或减小的一个指标。通常我们把协方差记作cov(X, Y),其中X和Y分别代表两个变量。方差则是描述一个单一随机变量分布离散程度的重要指标,记作σ_x或者σ^2。

对于样本数据而言,相关系数ρ可以通过以下公式计算得出:

ρ = cov(X, Y) / (σ_x * σ_y)

相关系数ρ的取值范围在-1到1之间。当ρ为1时,表示X和Y之间呈完全正相关关系;当ρ为-1时,则表示完全负相关;若ρ为0,则说明X和Y之间没有线性关系。

相关系数的几何意义是衡量两个变量之间曲线的几何相似性。ρ越接近1或-1,则曲线越趋近;反之,ρ越接近0,曲线与直线之间的距离也就越大。

转载地址:http://efvkk.baihongyu.com/

你可能感兴趣的文章
NEW DATE()之参数传递
查看>>
New Journey--工作五年所思所感小记
查看>>
new Queue(REGISTER_DELAY_QUEUE, true, false, false, params)
查看>>
New Relic——手机应用app开发达人的福利立即就到啦!
查看>>
new work
查看>>
new 一个button 然后dispose,最后这个button是null吗???
查看>>
NewspaceGPT的故事续写能力太强了
查看>>
NewspaceGPT绘制时序图
查看>>
NewspaceGPT绘制类图
查看>>
new一个对象的过程
查看>>
new和delete用法小结
查看>>
new对象时,JVM内部究竟藏了什么小秘密?
查看>>
new操作符的实现原理
查看>>
Next.js React Server Components 教程
查看>>
NextGen Mirth Connect XStream反序列化远程代码执行漏洞(CVE-2023-43208)
查看>>
next项目部署到服务器pm2进程守护
查看>>
nexus 介绍
查看>>
nexus上传jar
查看>>
Nexus指南中的更新强调集成和透明度的重要性
查看>>
Nexus指南已经发布
查看>>